How to identify plan regressions
using the new pg_stat_plans
& fix them with pganalyze

*
@ pganalyze lukas@pganalyze.com

1. Query plans can change over time

2. How to capture plan statistics

3. The new pg_stat_plans extension

4. Behind the scenes: Low-overhead Plan IDs

5. Fixing bad query plans with pganalyze Query Advisor

+
@ pganalyze

+
pganalyze

Query plans can
change over time

*
pganalyze Query plans can change over time
NN

Let's start with a simple query:

SELECT databases.*
FROM databases
WHERE
databases.server_id = $1
AND databases.hidden = $2
ORDER BY databases.id ASC
LIMIT $3

*
pganalyze Query plans can change over time
NN

Sometimes we get a good plan:

QUERY PLAN
Limit (cost=137.54..137.55 rows=4 width=152) (actual time=0.029..0.029 rows=2 loops=1)
-> Sort (cost=137.54..137.55 rows=4 width=152) (actual time=0.028..0.028 rows=2 loops=1)
Sort Key: 1d
Sort Method: quicksort Memory: 25kB
-> Index Scan using index_databases_on_server_id_and_datname on databases (cost=0.56..137.5€
Index Cond: (server_id = "XXX'::uuid)
Filter: (NOT hidden)
Rows Removed by Filter: 3
Planning Time: 0.096 ms
Execution Time: 0.046 ms

*
pganalyze Query plans can change over time
NN

And sometimes we get a bad plan:

QUERY PLAN
Limit (cost=1000.58..18048.33 rows=1000 width=152) (actual time=537.544..539.169 rows=1 loops=1)
-> Gather Merge (cost=1000.58..162851.91 rows=9494 width=152) (actual time=537.543..539.167 rows=]
Workers Planned: 2
Workers Launched: 2
-> Parallel Index Scan using databases_pkey on databases (cost=0.56..160756.04 rows=3956 wic
Filter: ((NOT hidden) AND (server_id = 'YYY'::uuid))
Rows Removed by Filter: 982622
Planning Time: 0.088 ms
Execution Time: 539.213 ms

*
pganalyze Query plans can change over time
NN

Reasons for bad plans suddenly appearing:

- Difterent input values change selectivity

- ANALYZE changed the table statistics

- Table data changed

- Indexes changed

- Postgres version upgrades (rare, but it happens!)

*
pganalyze Query plans can change over time
NN

We can't run (and look at) EXPLAIN on every single query.

Plan Statistics are about capturing what happens
over time, so we can proactively identify bad plans.

+
pganalyze

How to capture
plan statistics

*
pganalyze How to capture plan statistics
NN

Query ID
Ditterentiates by query structure.

Plan ID
Ditferentiates by plan shape.

*
pganalyze How to capture plan statistics
NN

Plan Shape
~ EXPLAIN (COSTS OFF)

Seg Scan on users
Filter: (lower((email)::text) = '..."::text)

VS

Bitmap Heap Scan on users
Recheck Cond: (lower((email)::text) = "..."::text)
-> Bitmap Index Scan on 1index_users_lower_ematl
Index Cond: (lower((email)::text) = "...'::text)

*
‘ pganalyze How to capture plan statistics
NN

Plan IDs let us track plan usage over time

] Show All Plans @

Plan Statistics

PLAN EST. COST AVG RUNTIME CALLS / MIN ORIGINALPLANID@® PLAN NODES
& 2d4bb24 0 0.06ms 17 -15608242543328.. Aggregate - CTE - CTE +142 more
H b111737 0 0.07ms 5 -91824118698804.. Aggregate - CTE - CTE +138 more
Avg Time
® b11f737 © 2d4bb24

0.08 ms:

0.06 ms — A

0.04 ms —

0.02 ms —

0.00 ms | |

T
07:50 07 51 07 52 07: 53 07 54 07 55 07: 56 07 57 07: 58 07:59 08 AM 08:01 08 02 08: 03 08 04 08: 05 08: 06 08 07 08: 08 08 09 08 10 08 1 08 12 08 13 08 14 08 15 08 16 08 17 08 18 08 19 08:20

LN N N N N N N O N N

07:50 07:51 0752 0753 07:54 07:55 07:56 07:57 07:58 0759 O08AM 0801 08:02 0803 08:04 08:05 08:06 08:07 08:08 08:09 08:10 08:11 08:12 08:13 08:14 08:15 08:16 08:17 08:18 08:19 08:20

*
pganalyze How to capture plan statistics
NN

Plan IDs let us detect regressions, quickly

"I'm a huge fan of Postgres. This one is “user error”, but we still got bit pretty hard.

A query plan changed, on a frequently-run query (~1k/sec) on a large table (~2B
rows) without warning. Went from sub-millisecond to multi-second.

The PG query planner is generally very good, but also very opaque.”
- Scott Hardy on Hacker News (2021)

https://news.ycombinator.com/item?id=28489340

*
pganalyze How to capture plan statistics
NN

This is not a new idea.

= O 2ndQuadrant / pg_stat_plans Q
<> Code () Issues 11 I9 Pullrequests (») Actions Projects [0 Wiki @ Security |~/ Insights
—® pg_stat_plans public ® Unwatch 65

¥ master ~ ¥ 1Branch © 4 Tags Q Go to file t Add file ~ <> Code ~

Commit 4¢c8c749

Peter Geoghegan committed on Aug 17, 2012

Initial commit of pg_stat_plans.

Some rolling-back of functionality that clearly will only work with 9.2. The
utility does not yet build against PostgreSQL 9.1.

¥ master - © REL1_O_STABLE *:* REL1_0_BETA1

*
pganalyze How to capture plan statistics
NN

The old pg_stat_plans
is unmaintained.

There are open-source alternatives,
but they have high overhead.

*
pganalyze How to capture plan statistics
NN

pg_store_plans

EL? F master ~ pg_store_plans / pg_store_plans.c

[Code ’ Blame 2485 lines (2153 loc) - 67.3 KB

107 typedef enum pgspVersion
1241 normalized_plan = pgsp_json_normalize(plan);
1242 shorten_plan = pgsp_json_shorten(plan);
1243 elog(DEBUG3, "pg_store_plans: Normalized plan: %s", normalized_plan);
1244 elog(DEBUG3, "pg_store_plans: Shorten plan: %s", shorten_plan);
1245 elog(DEBUG3, "pg_store_plans: Original plan: %s", plan);
1246 plan_len = strlen(shorten_plan);
1247
1248 key.planid = hash_any((const unsigned char *x)normalized_plan,
1249 strlen(normalized_plan));
1250 pfree(normalized_plan);

1281

Calculates the EXPLAIN text for every execution to hash it for the plan ID
~20% overhead in some cases

*
‘ pganalyze How to capture plan statistics
NN

pg_stat_monitor

EL? ¥ main ~ pg_stat_monitor / pg_stat_monitor.c

g

Code | Blame 4041 lines (3486 loc) - 116 kB - Q)

\

707

708 /* Extract the plan information in case of SELECT statement x/

709 if (queryDesc—>operation == CMD_SELECT && pgsm_enable_query_plan)

710 {

711 int rv;

712 MemoryContext oldctx;

713

714 /*

715 * Making sure it is a per query context so that there's no memory

716 * leak when executor ends.

717 %/

718 oldctx = MemoryContextSwitchTo(queryDesc->estate->es_query_cxt);

719

720 rv = snprintf(plan_info.plan_text, PLAN_TEXT_LEN, "%s'", pgsm_explain(queryDesc));
721

722 /*

723 * If snprint didn't write anything or there was an error, let's keep

724 * planinfo as NULL.

725 */

726 if (rv > 0)

727 {

728 plan_info.plan_len = (rv < PLAN_TEXT_LEN) ? rv : PLAN_TEXT_LEN - 1;
729 plan_info.planid = pgsm_hash_string(plan_info.plan_text, plan_info.plan_len);
730 plan_ptr = &plan_info;

731 }

732

Calculates the EXPLAIN text for every execution to hash it for the plan ID
it enabled

*
pganalyze How to capture plan statistics
NN

In 2024, AWS launched
aurora_plan_stats for Aurora.

And Microsoft has plan IDs
in Query Store for Azure Postgres.

How to capture plan statistics

Can Postgres do better here?

+
pganalyze

A new pg_stat_plans

*
pganalyze A new pg_stat_plans

o .
= O pganalyze / pg_stat_plans Q Type (/] to search + v O I B8
<> Code () Issues 9 Pullrequests (») Actions Projects [0 Wiki @ Security |~ Insights 3 Settings
» ¥ main ~ pg_stat_plans /| README.md Q. Go to file t

github.com/pganalyze/pg_stat plans

pg_stat_plans 2.0 - Track per-plan call counts, execution times and
EXPLAIN texts in Postgres

pg_stat_plans is designed for low overhead tracking of aggregate plan statistics in Postgres, by relying on hashing the plan tree with a
plan ID calculation. It aims to help identify plan regressions, and get an example plan for each Postgres query run, slow and fast.
Additionally, it allows showing the plan for a currently running query.

Plan texts are stored in shared memory for efficiency reasons (instead of a local file), with support for zstd compression to compress
large plan texts.

Plans have the same plan IDs when they have the same "plan shape", which intends to match EXPLAIN (COSTS OFF) . This extension is
optimized for tracking changes in plan shape, but does not aim to track execution statistics for plans, like auto_explain can do for outliers.

This project is inspired by multiple Postgres community projects, including the original pg_stat_plans extension (unmaintained), with a goal
of upstreaming parts of this extension into the core Postgres project over time.

Experimental. May still change in incompatible ways without notice. Not (yet) recommended for production use.

http://github.com/pganalyze/pg_stat_plans

*
pganalyze A new pg_stat_plans

SELECT * FROM pg stat plans;

—[RECORD 1 Jmm e e e e

userid 10
dbid 16391
toplevel t
queryid -2322344003805516737
planid -1865871893278385236
calls 1
total exec time 0.047708
plan Limit
-> Sort
Sort Key: database stats 35d.frozenxid age DESC
-> Bitmap Heap Scan on database stats 35d 20250514 database stats 35d
Recheck Cond: (server id = '00000000-0000-0000-0000-000000000000"::uuid)

d at = '2025-05-14 14:30:(
14 server 1i1d idx

Cumulative statistics on which query ID used which plan, ~0000-000000000000" < suuid

how often (calls), and how long it took (total_exec_time).

*
‘ pganalyze A new pg_stat_plans

PG18: Introduce pluggable APIs for Cumulative Statistics

author Michael Paquier <michael@paquier.xyz>

Sun, 4 Aug 2024 10:41:24 +0000 (19:41 +0900)
committer Michael Paquier <michael@paquier.xyz>

Sun, 4 Aug 2024 10:41:24 +0000 (19:41 +0900)
commit 7949d9594582ab49dee221eldblaa5401lace49d4
tree ad74385fbb0ef9f8b8d5al25d4b6e7ddc87ab20b
parent 365b5a345b2680615527b23eebbefad9a2f784f2 commit

—

ree

o
=

Introduce pluggable APIs for Cumulative Statistics

This commit adds support in the backend for $subject, allowing
out-of-core extensions to plug their own custom kinds of cumulative
statistics. This feature has come up a few times into the lists, and
the first, original, suggestion came from Andres Freund, about
pg_stat_statements to use the cumulative statistics APIs in shared
memory rather than its own less efficient internals. The advantage of
this implementation is that this can be extended to any kind of
statistics.

The stats kinds are divided into two parts:

— The in-core "builtin" stats kinds, with designated initializers, able
to use IDs up to 128.

— The "custom" stats kinds, able to use a range of IDs from 128 to 256
(128 slots available as of this patch), with information saved in
TopMemoryContext. This can be made larger, if necessary.

There are two types of cumulative statistics in the backend:

- For fixed-numbered objects (like WAL, archiver, etc.). These are
attached to the snapshot and pgstats shmem control structures for
efficiency, and built-in stats kinds still do that to avoid any
redirection penalty. The data of custom kinds is stored in a first
array in snapshot structure and a second array in the shmem control
structure, both indexed by their ID, acting as an equivalent of the
builtin stats.

- For variable-numbered objects (like tables, functions, etc.). These
are stored in a dshash using the stats kind ID in the hash lookup key.

Internally, the handling of the builtin stats is unchanged, and both
fived and variabhled-niimbered obiectc are <unnorted. Striucture

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=7949d9594582ab49dee221e1db1aa5401ace49d4

*
pganalyze A new pg_stat_plans

SELECT * FROM pg stat plans;

—[RECORD 1 Jmm o e e

userid 10
dbid 16391
toplevel t
queryid -2322344003805516737
planid -1865871893278385236
calls 1
total exec time 0.047708
plan Limit
-> Sort
Sort Key: database stats 35d.frozenxid age DESC
-> Bitmap Heap Scan on database stats 35d 20250514 database stats 35d

Plan ID calculated with tree walk after planning
+ copying code from Postgres

*
pganalyze

A new pg_stat_plans

SELECT * FROM pg stat plans;

Plan Text stored in Dynamic Shared Memory,
not a file on disk. Optionally compressed with zstd.

plan

Limit
>

Sort
Sort Key: database stats 35d.frozenxid age DESC
-> Bitmap Heap Scan on database stats 35d 20250514 database stats 35d
Recheck Cond: (server id = '00000000-0000-0000-0000-000000000000"::uuic
Filter: ((frozenxid age IS NOT NULL) AND (collected at = '2025-05-14 14
-> Bitmap Index Scan on database stats 35d 20250514 server id idx
Index Cond: (server id = '00000000-0000-0000-0000-000000000000"::

*
pganalyze A new pg_stat_plans

SELECT * FROM pg stat plans activity;

pid plan 1d plan
_______ S
83994 -5449095327982245076 Merge Joiln
Merge Cond: ((a.datid = p.dbid) AND (a.usesysid = p.userid) AND (a.query 1d = p.query:
-> Sort

Sort Key: a.datid, a.usesysid, a.query id, a.plan id
-> Function Scan on pg stat plans get activity a
-> Sort
Sort Key: p.dbid, p.userid, p.queryid, p.planid
-> Function Scan on pg stat plans p
Filter: (toplevel IS TRUE)
87168 4721228144609632390 Sort
Sort Key: gq.id
—> Nested Loop
-> Index Scan using index query runs on server id on query runs q
Index Cond: (server id = '00000000-0000-0000-0000-000000000000"::uu1id)

Get the plan for a currently running query
(no progress tracking, just the plan that's being used)

*
pganalyze A new pg_stat_plans

Overhead is noticeably lower
than existing extensions (higher is better)

TPS, pgbench -T 60 -S, Best of 3, AWS c7/i.4xlarge

17 default
17 pg_store_plans
18 default

18 pg_stat_statements

18 pg_stat statements +
plans

18 pg_stat_plans w/o
compress

18 pg_stat_plans w/
compress

0 10000 20000 30000

*
pganalyze A new pg_stat_plans

Next steps for pg_stat_plans 2.0

- Plan text compression improvements
- Stabilize extension (test/benchmark)
- Include in Postgres repositories

- Get cloud providers to adopt pg_stat_plans

*
pganalyze A new pg_stat_plans

Open questions

- How do we handle table partitioning (Append node) in plan |IDs?
- What metrics should we capture per-plan?

- Worth supporting non-text EXPLAIN output?

- Should we normalize plan texts? (remove constants)

+
pganalyze

Behind the scenes:
Low-overhead Plan IDs

Behind the scenes: Low-overhead Plan IDs

Plan ID calculation must be fast
t should happen with every
olanning cycle.

Behind the scenes: Low-overhead Plan IDs

ExplainPrintPlan + hash(big text)

Behind the scenes: Low-overhead Plan IDs

Behind the scenes: Low-overhead Plan IDs

We need a tree walk + "jumble”

Query ID = Walk post parse-analysis trees
Plan ID = Walk plan tree

*
pganalyze Behind the scenes: Low-overhead Plan IDs

This is not trivial out-of-core.

typedef struct IndexScan
{
Scan scan;
/* 0ID of 1ndex to scan x/
0id indexid;
/* list of index quals (usually OpExprs) x/
List *xindexqual;

e.g. Index Quals are "Usually” OpExpr
(but could be any node, and we want to make a hash of it)

*
pganalyze Behind the scenes: Low-overhead Plan IDs

In core its easy to maintain
"what is significant”
on the plannodes.h structs

=
. @@ -1059,7 +1059,7 @@ typedef struct Memoize
1059 1059 * The maximum number of entries that the planner expects will fit in the
1060 1060 * cache, or @ 1if unknown
1061 1061 */
1062 - uint32 est_entries;
1062 + uint32 est_entries pg_node_attr(query_jumble_ignore);
1063 1063
1064 1064 /* paramids from param_exprs x/
1065 1065 Bitmapset x*keyparamids;
e
. @@ -1156,7 +1156,7 @@ typedef struct Agg
1156 1156 0id xgrpCollations pg_node_attr(array_size(numCols));
1157 1157
1158 1158 /* estimated number of groups in input x/

*
‘ pganalyze Behind the scenes: Low-overhead Plan IDs

In Postgres 18, started effort to define what a
"Plan ID" could be in upstream Postgres

page discussion view source history

Want to edit, but don't see an edit button when logged in? Click here.

Plan ID Jumbling

This page describes the proposed feature for Postgres 18 or 19 that records a planid , similar to the existing queryid recorded by query jumbling (previously done by pg_stat_state

See Commitfest entry & and pgsql-hackers thread .

navigation
= Main Page What to jumble
= Random page
= Recent changes The current thesis behind what should be jumbled (included in the planid hash) is that plans that have the same EXPLAIN (COSTS OFF) output should yield the same planid .-
= Help different planid , but different costs/selectivity or execution time statistics do not.
tools Note that plan jumbling relies on the existing query jumbling logic and decisions for any expressions, and as such e.g. ignores A_Const nodes, so a plan with different parameter value:

= What links here

Plan jumbling is currently proposed to occur during the existing treewalk in src/backend/optimizer/plan/setrefs.c , and as such fields that would cause us to descend down tt
= Related changes

"Indirect" in the table below.
= Special pages

a Printable version Further, to ease maintenance we jumble any field that is not explicitly causing issues with a changing planid , even if the field is not actually used by src/backend/commands/exp

= Permanent link We could alternatively omit any fields that are duplicated (e.g. only have one of IndexScan.indexqual and IndexScan.indexqualorig), or omit those only used by the executc

= Page information performance at the expense of higher maintenance overhead (review to be done) when adding new fields.

search

[Search PostgresaL] Jumbling details for all plan struct (plannodes.h) fields

| Go | | Search | For easier review/discussion, the table below represents all fields under consideration to be jumbled/not jumbled:

Struct / Field Include in Jumble Hash? Why not? / Notes
Plan (abstract)
type Yes

*
pganalyze Behind the scenes: Low-overhead Plan IDs

In core we also have a tree walk
we could re-use, in setrefs.c

v -y 9 HEEEE src/backend/optimizer/plan/setrefs.c Ll;]

X @@ -19,6 +19,7 @@
19 19 #include "catalog/pg_type.h"
20 20 #include "nodes/makefuncs.h"
21 21 #include "nodes/nodeFuncs.h"
22 + #include "nodes/queryjumble.h"
22 23 #include "optimizer/optimizer.h"
23 24 #include "optimizer/pathnode.h"
24 25 #include "optimizer/planmain.h"
: @@ -1315,6 +1316,14 @@ set_plan_refs(PlannerInfo *xroot, Plan *xplan, int rtoffset)
1315 1316 plan—>lefttree = set_plan_refs(root, plan—>lefttree, rtoffset);
1316 1317 plan->righttree = set_plan_refs(root, plan->righttree, rtoffset);
1317 1318
1319 + /*
1320 + * If enabled, append significant information to the plan identifier
1321 + * jumble (we do this here since we're already walking the tree in a
1322 + *x near-final state)
1323 + %/
1324 + if (IsPlanIdEnabled())
1325 + JumbleNode(root—>glob—>plan_jumble_state, (Node *) plan);

*
pganalyze Behind the scenes: Low-overhead Plan IDs

Most of this got pushed to PG19+.

But we did get a
key improvement in 18
we can build on.

*
‘ pganalyze Behind the scenes: Low-overhead Plan IDs

PG18: Allow plugins to set a 64-bit plan identifier in PlannedStmt

author Michael Paquier <michael@paquier.xyz>

Mon, 24 Mar 2025 04:23:42 +0000 (13:23 +0900)
committer Michael Paquier <michael@paquier.xyz>

Mon, 24 Mar 2025 04:23:42 +0000 (13:23 +0900)
commit 2a0cd38da5ccf70461c51a489ee7d25fcd3f26be
tree 000fe6d92b36523695dchb368d699ecf2ecddf191
parent 8a3e4011f02dd2789717c633e74fefdd3b648386 commi

—

ree

=
=3

Allow plugins to set a 64-bit plan identifier in PlannedStmt

This field can be optionally set in a PlannedStmt through the planner
hook, giving extensions the possibility to assign an identifier related
to a computed plan. The backend is changed to report it in the backend
entry of a process running (including the extended query protocol), with
semantics and APIs to set or get it similar to what is used for the
existing query ID (introduced in the backend via 4f@b@966c8). The plan
ID is reset at the same timing as the query ID. Currently, this
information is not added to the system view pg_stat_activity; extensions
can access it through PgBackendStatus.

Some patches have been proposed to provide some features in the planning
area, where a plan identifier is used as a key to know the plan involved
(for statistics, plan storage and manipulations, etc.), and the point of
this commit is to provide an anchor in the backend that extensions can
rely on for future work. The reset of the plan identifier is
controlled by core and follows the same pattern as the query identifier
added in 4f0b0966c8.

The contents of this commit are extracted from a larger set proposed
originally by Lukas Fittl, that Sami Imseih has proposed as an
independent change, with a few tweaks sprinkled by me.

Author: Lukas Fittl <lukas@fittl.com>

Author: Sami Imseih <samimseih@gmail.com>

Reviewed-by: Bertrand Drouvot <bertranddrouvot.pg@gmail.com>

Reviewed-by: Michael Paquier <michael@paquier.xyz>

Discussion: https://postgr.es/m/CAP53Pkyow59ajFMHGpmb1BKOWHDypaWtUsS_5DoYUEfsa_Hktg@mail.gmail.com
Discussion: https://postgr.es/m/CAASRZOvyWd4r35uUBUmhngv8XqeiJUKIDDKKLf5LCoWxv—t_pw@mail.gmail.com

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=2a0cd38da5ccf70461c51a489ee7d25fcd3f26be

*
pganalyze Behind the scenes: Low-overhead Plan IDs

typedef struct PlannedStmt
{
pg_node_attr(no_equal, no_query_jumble)

NodeTag type;

/* select|insert|update|delete|merge|utility x/
CmdType commandType;

/* query identifier (copied from Query) x/
uint64 queryld;

/* plan identifier (can be set by plugins) x*/
uint64 planld;

In Postgres 18, you can now write an extension that sets
PlannedStmt.planild in a planner_hook, and then uses it in
ExecutorFinish_hook to track statistics.

This enables pg_stat_plans_activity (plan for current queries).

+
pganalyze

Fixing bad query plans
with pganalyze Query Advisor

Fixing bad query plans with pganalyze Query Advisor

How could we fix a potential plan regression?

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

Aurora Query Plan Management is one solution:

Rejecting or disabling slower plans

To reject or disable plans, pass 'reject' or 'disable' as the action parameter to the
apg_plan_mgmt.evolve_plan_baselines function. This example disables any captured Unapproved plan that is
slower by at least 10 percent than the best Approved plan for the statement.

SELECT apg_plan_mgmt.evolve_plan_baselines(0
sql_hash, -- The managed statement ID

plan_hash, -- The plan ID

1.1, -- number of times faster the plan must be

'disable' -- The action to take. This sets the enabled field to false.

)

FROM apg_plan_mgmt.dba_plans

WHERE status = 'Unapproved' AND -- plan is Unapproved

origin = 'Automatic’; -- plan was auto-captured

You can also directly set a plan to rejected or disabled. To directly set a plan's enabled field to true or false, call the
apg_plan_mgmt.set_plan_enabled function. To directly set a plan's status field to 'Approved', 'Rejected’,
"Unapproved', or 'Preferred’, call the apg_plan_mgmt.set_plan_status function.

To delete plans that aren't valid and that you expect to remain invalid, use the apg_plan_mgmt.validate_plans
function. This function lets you delete or disable invalid plans. For more information, see Validating plans.

But it has no open-source alternative. And you need to produce the good plan.

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

With pganalyze Query Advisor,
we are introducing a different approach.

Utilizing EXPLAIN plan data from auto_explain, or manually uploaded plans,
we detect pathological patterns like row mis-estimates, wrong index use & more.

auto_explain sample Pattern Detection pganalyze

(Near-Realtime Collection) ("Phase 1") Workload Repository

(This uses auto_explain, since its more widely available than plan statistics today)

*
pganalyze

Fixing bad query plans with pganalyze Query Advisor

We cross-reference EXPLAIN plan data with schema information,
and create query-specific insights and rewrite recommendations.

pganalyze
Workload Repository

Schema-informed

Verification
("Phase 2")

Let's look at an example insight!

Query Advisor
Insight

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

@ | Server Database |
izl rod-db-main Primary I aweb v
N P P9

pganalyze v Query Advisor

¥ Dashboard Automated EXPLAIN (3) Workbooks with Insights (6)

Query Performance

Query Advisor Captured EXPLAIN Plans Queries with EXPLAIN Plans % of Query Runtime with EXPLAIN Plans
Index Advisor 371126 303 / 2,810 8325%

in the last 7 days in the last 7 days @ in the last 7 days @
VACUUM Advisor

Workbooks

Queries with Insights (3)

Schema Statistics

IMPACT ~ QUERY INSIGHTS SAMPLES MAX RUNTIME CALLS / MIN % OF ALL RUNTIME

Log Insights 11 SELECT databa.. WrongIndex Due To ORDER BY 4 6,219.71ms 123.71 0.11%
T e lions 1 SELECT schema.. Wrong Index Due To ORDER BY 10+ 122,662 .48ms 7.97 0.06%
' SELECT issues.. Inefficient Nested Loop 1 540.60ms 1.05 0.00%

Config Settings

System
Alerts & Check-Up

Settings

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

@ | Server) Database \
S pganalyze prod-db-main Primary ~ v pgaweb -V
pganalyze v Issue #28773919: Advisor Insights
Dashboard
Query Performance Overview
Severity Check Frequency Last Updated State
Query Advisor - . .
O Info © Daily 2025-09-24 08:15:19pm MDT @ Triggered UNTGIEIEELE
Index Advisor Description

Tuning opportunity found for query #3887820334
VACUUM Advisor

AR Insight 1 of 1: Wrong Index Due To ORDER BY Found in plan: [1] 45fd5ec

Schema Statistics

Pattern Detected: The ORDER BY + LIMIT clause is causing an inefficient index to be selected by the planner. Try rewriting the query by adding +0 to the ORDER
BY column to use a different index scan.

Log Insights

o Current Query Impact ||} Suggested Query Rewrite Show Rewrite Steps Create Workbook

T T 1 /*xjob:Storage::RecheckMissingIndexWorker, line: 1 /xjob:Storage::RecheckMissingIndexWorker, Line:
ontig >ettings _ ‘ _ .
<internal:kernel>:187:1n <internal:kernel>:187:1n
"loop',sentry_trace_id:26b3535a17314fab9a383b5d0809%ae2d, trace "loop',sentry_trace_id:26b3535a17314fab9a383b5d0809%ae2d, trace
e state:pganalyze=t:1744904666.847012%/ state:pganalyze=t:1744904666.847012x/
2 SELECT databases.x 2 SELECT databases.x
Alerts & Check-Up 3 FROM databases 3 FROM databases
4 WHERE 4 WHERE
Settings 5 databases.server_id = $1 5 databases.server_id = $1
6 AND databases.hidden = $2 6 AND databases.hidden = $2
7| ORDER BY databases.id ASC 7| ORDER BY databases.id + 0@ ASC
8 LIMIT $3 8 LIMIT $3
o) 9

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

@ | Server Database
S pganalyze prod-db-main Primary v pgaweb -V
4 WHERE 4 WHERE
SIeENENAR 4 5 databases.server_id = $1 5 databases.server_id = $1
6 AND databases.hidden = $2 6 AND databases.hidden = $2
Dashboard 7 | ORDER BY databases.id ASC 7 | ORDER BY databases.id + @ ASC
8 LIMIT $3 8 LIMIT $3
Query Performance 9 9
Query Advisor
EXPLAIN Plan
Index Advisor
Show: O Est. Cost @ Runtime () Rows () Buffers (O Reads O.Writes Runtime 1/0O Read Time
VACUUM Advisor All metrics exclude children, except Rows. Learn more about reading EXPLAIN plans.
6,219.71ms 1,723.52ms
Plan Runtime
Workbooks LS Limit 0.00ms Read From Disk Total Est. Cost
= %% Gather Merge 866.60ms Q4 4 VB 37.139
Schema Statistics o !
Parallel Index Scan (Forward) on.. limit/offset 6,213.65ms (23.0
Log Insights on public.databases using databases pkey Sep 22 03:45:45am MDT - Plan Fingerprint: 1 45fd5ec
Filter: ((NOT databases.hidden) AND (databases.server 1id = .. ¥
Connections Rows Removed by Filter: 949508 Insights
Scan Direction: Forward .
Config Settings Query Advisor
EJ Wrong Index Due To ORDER BY
System e The ORDER BY + LIMIT clause is causing an
inefficient index to be selected by the planner.
Alerts & Check-Up e Try rewriting the query by adding +0 to the ORDER

BY column to use a different index scan.

Settings

View workbook

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

@ | Server Database |
S pganalyze prod-db-main Primary v pgaweb ~

pganalyze »

Query #3887820334

Edit name and description

Cancel workflow
Dashboard

Query Performance

' O Review query @ Choose parameters € Run EXPLAIN £ Edit parameter settings
Query Advisor

[Advisor SELECT databases.x (O copy
FROM databases
WHERE
databases.server_id = $server_id
AND databases.hidden = $hidden
ORDER BY databases.id ASC

VACUUM Advisor

Workbooks

Schema Statistics
Extract parameters from query samples Extract parameters from query Specify parameters manually

Log Insights

‘@ We found the 1 most interesting parameter sets for you in your query samples. For the best experience, select at least two distinct parameter sets.
Connections

Config Settings

System PARAMETER SET CURRENT PLAN RUNTIME ~
$param = 1000, $server_id = '5a9078eb-b4ad-4e28-b3e2-283f156deeld', $hidden = false 45fd5ec 6,219.71ms
Alerts & Check-Up 2025-09-22 03:45:45am MDT

Settings
Selected Parameter Sets

PARAMETER SET CURRENT PLAN

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

@ | Server Database
S pganalyze prod-db-main Primary v pgaweb v

pganalyze » Query #3887820334
o4 Dashboard Variant: Baseline v Parameter Set: Parameter Set 1 v
Overview Compare Plans Parameter Sets Activity
Query Performance
Query Advisor Node Tree Grid Text JSON Runtime /O Read Time
495.51ms 0.00ms

Index Advisor

SQL Statement Read From Disk Total Est. Cost
VACUUM Advisor

SELECT databases.x 0B 39,259
e 5erele FROM databases

WHERE Sep 23 02:26:12pm MDT - Plan Fingerprint: []1 45fd5ec
Schema Statistics

2% Show full query text Insights
Log Insights Query Advisor

Show: () Est. Cost @® Runtime () Rows () Buffers () Reads () Writes Wrong Index Due To ORDER BY
Connections All metrics exclude children, except Rows. Learn more about reading EXPLAIN plans.
e The ORDER BY + LIMIT clause is causing an
Config Settings Plan Runtime inefficient index to be selected by the planner.
Y Limit mis-estimate 0.00ms e Try rewriting the query by adding +0 to the ORDER
%% Gather Merge mis-estimate 0.00ms BY column to use a different index scan.

System

(*) Parallel Index Scan (Forward) limit/offset ineffici 1,474 .43ms 23.0 ‘
View workbook

Alerts & Check-Up

Inefficient Index Scan >

Settings s . .
0 Significant mis-estimate >

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

N/
/\
N/
/\

@ | Server Database
S pganalyze prod-db-main Primary pgaweb

pganalyze

Untitled Variant

Edit name and description

Cancel workflow
4 Dashboard

Query Performance

. . b =vBl AR Query Advisor
S O Rewrite Query and Edit Planner @ Run EXPLAIN
Wrong Index Due To ORDER BY
Index Advisor Edit Unified Diff Sp'lt Diff e The ORDER BY + LIMIT clause is causing
an inefficient index to be selected by the
VACUU’\A ACJ\NSOI’ 1 SELECT databases.* planner.
2 FROM databases e Try rewriting the query by adding +0 to
Workbooks 3| WHERE _ ‘ the ORDER BY column to use a different
4 databases.server_id = $server_id .
_ _ index scan.
e 5 AND databases.hidden = $hidden
Schema Statistics ¢ | ORDER BY datab .4 ASC
atabases. i .
45¢f
| 7 LIMIT $param Apply Found in 5fd5ec
Log Insights 3

Connections

‘@ Customize planner behavior by

Config Settings

changing the settings and hints.

System Settings are only applied to the current

session.

@ Edit Planner Settings

Alerts & Check-Up

Settings

@ Edit Planner Hints

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

@ | Server Database
S pganalyze prod-db-main Primary ~ v pgaweb ~ v

pganalyze »

Untitled Variant

Edit name and description

Cancel workflow
Dashboard

Query Performance

: . A D . CvDl AN Query Advisor
Query Advisor O Rewrite Query and Edit Planner @ Run EXPLAIN
Wrong Index Due To ORDER BY
Index Advisor Edit Unified Diff Sp'lt Diff e The ORDER BY + LIMIT clause is causing
an inefficient index to be selected by the

\/ACUUM Ad\/isor’ 1 SELECT databases.* planner.

2 FROM databases e Try rewriting the query by adding +0 to
Workbooks 2l WHERE _ _ the ORDER BY column to use a different

4 databases.server_id = $server_id .

. . index scan.
5 AND databases.hidden = $hidden

Schema Statistics _
ORDER BY databases.id ASC v Applied Found in [] 45fd5ec

_ 6| ORDER BY databases.id + $zero ASC
Log Insights 7 LIMIT $param
38
Connections
‘@ Customize planner behavior by
Config Settings changing the settings and hints.
Settings are only applied to the current
System session.

Alerts & Check-Up

@ Edit Planner Settings

Settings

@ Edit Planner Hints

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

@ | Server Database

N/ N/
pganalyze rod-db-main Primary v aweb ~ v
N P P9I

pganalyze v Query #43839624

Dashboard Overview Compare Plans Parameter Sets Activity

Query Performance

Query Advisor All Query Plans + New Query Variant

Choose a query variant to see its query text and settings, or create a new variant. Variants can be used to
i ity = = All Query Plans

Index Advisor test Postgres planner behavior or rewrite queries to improve performance. Learn more.

VACUUM Advisor -O- Baseline
Query Plans v
Workbooks 1: Variant 1 ml
PLAN VARIANT PARAMETER SET EST. COST RUNTIME
e tatistics O 1 45fdSec Baseline Parameter Set 1 36,084 478.96ms
Log Insights J B 476f06e Variant 1 Parameter Set 1 60,773 454.27ms Query Advisor
Connections Wrong Index Due To ORDER BY
e The ORDER BY + LIMIT clause is causing
Config Settings an inefficient index to be selected by the
planner.
System e Try rewriting the query by adding +0 to
the ORDER BY column to use a different
Alerts & Check-Up index scan.

Found in 1 45fd5ec

Settings

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

@ | Server Database
S pganalyze prod-db-main Primary v pgaweb v

pganalyze v Query #3887820334

4 Dashboard

Overview Compare Plans Parameter Sets Activity
Query Performance
Plan Comparison S 5 i Summary Node Details Node Source
Query Advisor
Compare @: O Est. Cost @ Runtime O I/O Read Time O Rows (O Buffers Plan A: Baseline - Parameter Set 1
Index Advisor
Plan A Plan B Plan A Plan B Seen At Total Est. Cost Runtime
VACUUM Advisor Baseline - Parameter Set 1 Variant 1 - Parameter Set 1 Runtime Runtime Sep 23 02:26pm 39,259 495.51ms
-> Limit -> Limit 0.00ms 0.00ms Plan Fingerprint Read From Disk /O Read Time
Workbooks -> Gather Merge 1.76ms 45fd5ec 0B 0.00ms
-> Index Scan! on d.. 493.72ms
Schema Statistics -> Sort 0.01 .
o e Plan B: Variant 1 - Parameter Set 1
-> Bitmap Heap Scan 48 .78ms
Log Insights -> Bitmap Index Sc.. 9 29ms Seen At Total Est. Cost Runtime
Sep 23 02:27pm 60,680 58.11ms
Connections
Plan Fingerprint Read From Disk /0O Read Time
B 476106e 0B 0.00ms

Config Settings

System
Index usage

Alerts & Check-Up

A B Index

Settings v 1. databases_pkey

Vv 2. index _databases on server id and datname

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

Rewrites are "Codemods" for queries

Query Advisor] Parse SQL
, ——» Query Rewriter ——mmm ,
Insight using pg_query

!

Modify Parsetree
Based on Rewrite Rule

!

Applied Insight Deparse + Format SQL
—
in Workbook using pg_query

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

Additional insights in the works:

- Other cases of Wrong Index Use
- OR => UNION transtormation
- Memoize mis-estimates
- GROUP BY column ordering
- Planner hint suggestions
- Settings changes
-work mem
- random_page_cost
- elc.

*
pganalyze Fixing bad query plans with pganalyze Query Advisor

pganalyze Query Advisor at a High Level

- Built for scale, running behind the scenes
- Currently processing 7 million samples per day
- Custom code, not using LLM-driven analysis

(LLMs/GenAl doesn't scale for automated analysis)

Available today!
(and does not require Plan Statistics or Postgres 18!)

Stop by the pganalyze booth for a live demo.

+
pganalyze

Thank you!

Try out pganalyze:

PGANALYZE.COM

Reach out for any questions:

lukas@pganalyze.com

https://pganalyze.com
mailto:lukas@pganalyze.com

