
How to identify plan regressions
using the new pg_stat_plans
& fix them with pganalyze

lukas@pganalyze.com

1. Query plans can change over time
2. How to capture plan statistics
3. The new pg_stat_plans extension
4. Behind the scenes: Low-overhead Plan IDs
5. Fixing bad query plans with pganalyze Query Advisor

Query plans can
change over time

Query plans can change over time

SELECT databases.*
FROM databases
WHERE
 databases.server_id = $1
 AND databases.hidden = $2
ORDER BY databases.id ASC
LIMIT $3

Let's start with a simple query:

Query plans can change over time

 QUERY PLAN
--
 Limit (cost=137.54..137.55 rows=4 width=152) (actual time=0.029..0.029 rows=2 loops=1)
 -> Sort (cost=137.54..137.55 rows=4 width=152) (actual time=0.028..0.028 rows=2 loops=1)
 Sort Key: id
 Sort Method: quicksort Memory: 25kB
 -> Index Scan using index_databases_on_server_id_and_datname on databases (cost=0.56..137.50 rows=4 width=152) (actual time=0.018..0.023 rows=2 loops=1)
 Index Cond: (server_id = 'XXX'::uuid)
 Filter: (NOT hidden)
 Rows Removed by Filter: 3
 Planning Time: 0.096 ms
 Execution Time: 0.046 ms

Sometimes we get a good plan:

Query plans can change over time

 QUERY PLAN

 Limit (cost=1000.58..18048.33 rows=1000 width=152) (actual time=537.544..539.169 rows=1 loops=1)
 -> Gather Merge (cost=1000.58..162851.91 rows=9494 width=152) (actual time=537.543..539.167 rows=1 loops=1)
 Workers Planned: 2
 Workers Launched: 2
 -> Parallel Index Scan using databases_pkey on databases (cost=0.56..160756.04 rows=3956 width=152) (actual time=368.390..535.075 rows=0 loops=3)
 Filter: ((NOT hidden) AND (server_id = 'YYY'::uuid))
 Rows Removed by Filter: 982622
 Planning Time: 0.088 ms
 Execution Time: 539.213 ms

And sometimes we get a bad plan:

Query plans can change over time

Reasons for bad plans suddenly appearing:

- Different input values change selectivity
- ANALYZE changed the table statistics
- Table data changed
- Indexes changed
- Postgres version upgrades (rare, but it happens!)

Query plans can change over time

We can't run (and look at) EXPLAIN on every single query.

Plan Statistics are about capturing what happens
over time, so we can proactively identify bad plans.

How to capture
plan statistics

How to capture plan statistics

Query ID
Differentiates by query structure.

Plan ID
Differentiates by plan shape.

How to capture plan statistics

Plan Shape
~ EXPLAIN (COSTS OFF)

Seq Scan on users
 Filter: (lower((email)::text) = '...'::text)

vs

 Bitmap Heap Scan on users
 Recheck Cond: (lower((email)::text) = '...'::text)
 -> Bitmap Index Scan on index_users_lower_email
 Index Cond: (lower((email)::text) = '...'::text)

How to capture plan statistics

Plan IDs let us track plan usage over time

How to capture plan statistics

Plan IDs let us detect regressions, quickly

"I’m a huge fan of Postgres. This one is “user error”, but we still got bit pretty hard.

A query plan changed, on a frequently-run query (~1k/sec) on a large table (~2B
rows) without warning. Went from sub-millisecond to multi-second.

The PG query planner is generally very good, but also very opaque."
- Scott Hardy on Hacker News (2021)

https://news.ycombinator.com/item?id=28489340

How to capture plan statistics

This is not a new idea.

How to capture plan statistics

The old pg_stat_plans
is unmaintained.

There are open-source alternatives,
but they have high overhead.

How to capture plan statistics

pg_store_plans

Calculates the EXPLAIN text for every execution to hash it for the plan ID
~20% overhead in some cases

How to capture plan statistics

pg_stat_monitor

Calculates the EXPLAIN text for every execution to hash it for the plan ID
(if enabled)

How to capture plan statistics

In 2024, AWS launched
aurora_plan_stats for Aurora.

And Microsoft has plan IDs
in Query Store for Azure Postgres.

How to capture plan statistics

Can Postgres do better here?

A new pg_stat_plans

A new pg_stat_plans

 github.com/pganalyze/pg_stat_plans

http://github.com/pganalyze/pg_stat_plans

A new pg_stat_plans

SELECT * FROM pg_stat_plans;  

 
-[RECORD 1]---+--
userid | 10
dbid | 16391
toplevel | t
queryid | -2322344003805516737
planid | -1865871893278385236
calls | 1
total_exec_time | 0.047708
plan | Limit +
 | -> Sort +
 | Sort Key: database_stats_35d.frozenxid_age DESC +
 | -> Bitmap Heap Scan on database_stats_35d_20250514 database_stats_35d +
 | Recheck Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid) +
 | Filter: ((frozenxid_age IS NOT NULL) AND (collected_at = '2025-05-14 14:30:00'::timestamp without time zone))+
 | -> Bitmap Index Scan on database_stats_35d_20250514_server_id_idx +
 | Index Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid)Cumulative statistics on which query ID used which plan,
how often (calls), and how long it took (total_exec_time).

A new pg_stat_plans

PG18: Introduce pluggable APIs for Cumulative Statistics

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=7949d9594582ab49dee221e1db1aa5401ace49d4

A new pg_stat_plans

SELECT * FROM pg_stat_plans;  

 
-[RECORD 1]---+--
userid | 10
dbid | 16391
toplevel | t
queryid | -2322344003805516737
planid | -1865871893278385236
calls | 1
total_exec_time | 0.047708
plan | Limit +
 | -> Sort +
 | Sort Key: database_stats_35d.frozenxid_age DESC +
 | -> Bitmap Heap Scan on database_stats_35d_20250514 database_stats_35d +
 | Recheck Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid) +
 | Filter: ((frozenxid_age IS NOT NULL) AND (collected_at = '2025-05-14 14:30:00'::timestamp without time zone))+
 | -> Bitmap Index Scan on database_stats_35d_20250514_server_id_idx +
 | Index Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid)Plan ID calculated with tree walk after planning
+ copying code from Postgres

A new pg_stat_plans

SELECT * FROM pg_stat_plans;  

 
-[RECORD 1]---+--
userid | 10
dbid | 16391
toplevel | t
queryid | -2322344003805516737
planid | -1865871893278385236
calls | 1
total_exec_time | 0.047708
plan | Limit +
 | -> Sort +
 | Sort Key: database_stats_35d.frozenxid_age DESC +
 | -> Bitmap Heap Scan on database_stats_35d_20250514 database_stats_35d +
 | Recheck Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid) +
 | Filter: ((frozenxid_age IS NOT NULL) AND (collected_at = '2025-05-14 14:30:00'::timestamp without time zone))+
 | -> Bitmap Index Scan on database_stats_35d_20250514_server_id_idx +
 | Index Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid)

Plan Text stored in Dynamic Shared Memory,
not a file on disk. Optionally compressed with zstd.

A new pg_stat_plans

SELECT * FROM pg_stat_plans_activity;

 
 pid | plan_id | plan
-------+----------------------+--
 83994 | -5449095327982245076 | Merge Join +
 | | Merge Cond: ((a.datid = p.dbid) AND (a.usesysid = p.userid) AND (a.query_id = p.queryid) AND (a.plan_id = p.planid))+
 | | -> Sort +
 | | Sort Key: a.datid, a.usesysid, a.query_id, a.plan_id +
 | | -> Function Scan on pg_stat_plans_get_activity a +
 | | -> Sort +
 | | Sort Key: p.dbid, p.userid, p.queryid, p.planid +
 | | -> Function Scan on pg_stat_plans p +
 | | Filter: (toplevel IS TRUE)
 87168 | 4721228144609632390 | Sort +
 | | Sort Key: q.id +
 | | -> Nested Loop +
 | | -> Index Scan using index_query_runs_on_server_id on query_runs q +
 | | Index Cond: (server_id = '00000000-0000-0000-0000-000000000000'::uuid) +
 | | Filter: ((started_at IS NULL) AND (finished_at IS NULL)) +
 | | -> Index Scan using databases_pkey on databases db +
 | | Index Cond: (id = q.database_id)
 81527 | 3819832514333472635 | Result
(3 rows)
Get the plan for a currently running query
(no progress tracking, just the plan that's being used)

A new pg_stat_plans

Overhead is noticeably lower
than existing extensions (higher is better)

A new pg_stat_plans

Next steps for pg_stat_plans 2.0

- Plan text compression improvements

- Stabilize extension (test/benchmark)

- Include in Postgres repositories

- Get cloud providers to adopt pg_stat_plans

A new pg_stat_plans

Open questions

- How do we handle table partitioning (Append node) in plan IDs?

- What metrics should we capture per-plan?

- Worth supporting non-text EXPLAIN output?

- Should we normalize plan texts? (remove constants)

Behind the scenes:
Low-overhead Plan IDs

Behind the scenes: Low-overhead Plan IDs

Plan ID calculation must be fast
It should happen with every
planning cycle.

Behind the scenes: Low-overhead Plan IDs

ExplainPrintPlan + hash(big text)

Behind the scenes: Low-overhead Plan IDs

ExplainPrintPlan + hash(big text)

Behind the scenes: Low-overhead Plan IDs

We need a tree walk + "jumble"

Query ID = Walk post parse-analysis trees
 Plan ID = Walk plan tree

Behind the scenes: Low-overhead Plan IDs

This is not trivial out-of-core.

e.g. Index Quals are "Usually" OpExpr
(but could be any node, and we want to make a hash of it)

Behind the scenes: Low-overhead Plan IDs

In core its easy to maintain
"what is significant"
on the plannodes.h structs

Behind the scenes: Low-overhead Plan IDs

In Postgres 18, started effort to define what a
"Plan ID" could be in upstream Postgres

Behind the scenes: Low-overhead Plan IDs

In core we also have a tree walk
we could re-use, in setrefs.c

Behind the scenes: Low-overhead Plan IDs

Most of this got pushed to PG19+.

But we did get a
key improvement in 18
we can build on.

Behind the scenes: Low-overhead Plan IDs

PG18: Allow plugins to set a 64-bit plan identifier in PlannedStmt

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=2a0cd38da5ccf70461c51a489ee7d25fcd3f26be

Behind the scenes: Low-overhead Plan IDs

In Postgres 18, you can now write an extension that sets
PlannedStmt.planId in a planner_hook, and then uses it in
ExecutorFinish_hook to track statistics.

This enables pg_stat_plans_activity (plan for current queries).

Fixing bad query plans
with pganalyze Query Advisor

Fixing bad query plans with pganalyze Query Advisor

How could we fix a potential plan regression?

Fixing bad query plans with pganalyze Query Advisor

Aurora Query Plan Management is one solution:

But it has no open-source alternative. And you need to produce the good plan.

Fixing bad query plans with pganalyze Query Advisor

With pganalyze Query Advisor,
we are introducing a different approach.

Utilizing EXPLAIN plan data from auto_explain, or manually uploaded plans,
we detect pathological patterns like row mis-estimates, wrong index use & more.

auto_explain sample
(Near-Realtime Collection)

Pattern Detection
("Phase 1")

pganalyze
Workload Repository

(This uses auto_explain, since its more widely available than plan statistics today)

Fixing bad query plans with pganalyze Query Advisor

We cross-reference EXPLAIN plan data with schema information,
and create query-specific insights and rewrite recommendations.

pganalyze
Workload Repository

Schema-informed
Verification
("Phase 2")

Query Advisor
Insight

Let's look at an example insight!

Fixing bad query plans with pganalyze Query Advisor

Fixing bad query plans with pganalyze Query Advisor

Fixing bad query plans with pganalyze Query Advisor

Fixing bad query plans with pganalyze Query Advisor

Fixing bad query plans with pganalyze Query Advisor

Fixing bad query plans with pganalyze Query Advisor

Fixing bad query plans with pganalyze Query Advisor

Fixing bad query plans with pganalyze Query Advisor

Fixing bad query plans with pganalyze Query Advisor

Fixing bad query plans with pganalyze Query Advisor

Rewrites are "Codemods" for queries

Query Advisor
Insight Query Rewriter Parse SQL

using pg_query

Modify Parsetree
Based on Rewrite Rule

Deparse + Format SQL
using pg_query

Applied Insight
in Workbook

Fixing bad query plans with pganalyze Query Advisor

Additional insights in the works:

- Other cases of Wrong Index Use
- OR => UNION transformation
- Memoize mis-estimates
- GROUP BY column ordering
- Planner hint suggestions
- Settings changes

- work_mem
- random_page_cost
- etc.

Fixing bad query plans with pganalyze Query Advisor

pganalyze Query Advisor at a High Level

- Built for scale, running behind the scenes
- Currently processing 7 million samples per day
- Custom code, not using LLM-driven analysis
 (LLMs/GenAI doesn't scale for automated analysis)

Available today!
(and does not require Plan Statistics or Postgres 18!)

Stop by the pganalyze booth for a live demo.

PGANALYZE.COM

Thank you!

Try out pganalyze:

Reach out for any questions:

lukas@pganalyze.com

https://pganalyze.com
mailto:lukas@pganalyze.com

